529 research outputs found

    Die ontwikkeling van 'n gedragsobservasieskaal as prestasiebeoordelingsinstrument vir senior bestuurders

    Get PDF
    Text in Afrikaans, abstract in Afrikaans and EnglishNavorsing toon dat beoordelingskale, gebaseer op spesifieke werksgedrag as geldige prestasiemetingsinstrumente gebruik kan word om die individuele ontwikkelingsbehoeftes van elke werknemer te bepaal. Die doel van die studie is die ontwikkeling en validering van 'n gedragsobservasieskaal vir senior bestuurders. Vir die doel is 49 senior bestuurders se prestasiemetings verkry op drie skale, naamlik 'n gedragsobservasieskaal wat ontwikkel is, die Werknemerbeoordelingskaal en 'n gedragsgeankerde skaal. 'n Pearson korrelasie van 0,74 is tussen die totaaltellings van die Gedragsobservasieskaal en die van die Gedragsgeankerde skaal verkry (p<0.01 ;N=49). Tussen die totaaltellings van die Gedragsobservasieskaal en die Werknemerbeoordelingskaal is 'n Pearson korrelasie van 0,75 gevind (p<0,01 ;N=49). Met hierdie resultate kan dus aanvaar word dat die Gedragsobservasieskaal 'n geldige meetinstrument van werksprestasie is en as prestasiemetingskaal gebruik kan word.Research indicates that appraisal scales based on specific behaviour can be used as performance appraisal instruments to promote every employees' individual development need. The aim of this study is the development and validation of a behavioural observation scale for senior management. To achieve this aim 49 senior managers' performance scores were obtained on three scales, namely a behavioral observation scale which was developed, the Employee Rating Scale, and a behaviourally anchored rating scale. A Pearson correlation of 0,74 was obtained between the total scores of the Behavioral Observation Scale and the Behaviourally Anchored Rating Scale (p<0,01 ;N=49). Between the total scores of the Behavioral Observation and the Employee Rating Scales a Pearson correlation of 0,75 was found (p<0,01 ;N=49). With these results in mind, the Behavioral Observation Scale can be accepted as a valid measurement scale of work performance and can thus be applied as a performance appraisal instrument.Industrial and Organisational PsychologyM. Comm. (Industrial Psychology

    The chemokine CXCL13 in acute neuroborreliosis

    Get PDF
    Objective Recent studies have suggested an important role of the B cell chemoattractant CXCL13 in acute neuroborreliosis (NB). Our aim was to confirm the diagnostic role of CXCL13 and to evaluate its relevance as a therapy response and disease activity marker in NB. Methods CXCL13 was measured in cerebrospinal fluid (CSF) and serum of patients with NB (n = 28), systemic borreliosis (SB, n = 9), Guillaine-Barre syndrome (GBS, n = 11), Bell's palsy (BP, n = 19), other cranial nerve palsies (CNP, n = 5), cephalgia (C, n = 20), bacterial CNS infections (B-CNS-I, n = 16) and viral CNS infections (V-CNS-I, n = 18). For follow-up studies, serial sample pairs were evaluated from 25 patients with NB (n = 56), 11 with B-CNS-I (n = 25) and 14 with V-CNS-I (n = 36). Results CSF-CXCL13 was significantly elevated in NB compared with other neurological diseases (p<0.001). Using receiver operating characteristic analysis, 337 ng/g was determined as a cut-off with a sensitivity of 96.4% and a specificity of 96.9%. Of all the parameters investigated, CSF CXCL13 showed the fastest response to antibiotic therapy, decreasing significantly (p = 0.008) within 1 week. In untreated patients, CSF CXCL13 was elevated in patients with a short duration of disease. Borrelia burgdorferi antibody index showed no significant (p = 0.356) change over follow-up. Conclusions The study confirms the relevance of CXCL13 as a diagnostic biomarker of NB and suggests that CSF CXCL13 in NB is linked to duration of disease and could be a marker of disease activity and response to antibiotic therapy

    Ethical Principles in Patient-Centered Medical Care to Support Quality of Life in Amyotrophic Lateral Sclerosis

    Get PDF
    It is one of the primary goals of medical care to secure good quality of life (QoL) while prolonging survival. This is a major challenge in severe medical conditions with a prognosis such as amyotrophic lateral sclerosis (ALS). Further, the definition of QoL and the question whether survival in this severe condition is compatible with a good QoL is a matter of subjective and culture-specific debate. Some people without neurodegenerative conditions believe that physical decline is incompatible with satisfactory QoL. Current data provide extensive evidence that psychosocial adaptation in ALS is possible, indicated by a satisfactory QoL. Thus, there is no fatalistic link of loss of QoL when physical health declines. There are intrinsic and extrinsic factors that have been shown to successfully facilitate and secure QoL in ALS which will be reviewed in the following article following the four ethical principles (1) Beneficence, (2) Non-maleficence, (3) Autonomy and (4) Justice, which are regarded as key elements of patient centered medical care according to Beauchamp and Childress. This is a JPND-funded work to summarize findings of the project NEEDSinALS (www.NEEDSinALS.com) which highlights subjective perspectives and preferences in medical decision making in ALS

    Writing self-assembled monolayers with Cs: Optimization of atomic nanolithography imaging using self-assembled monolayers on gold substrates

    Get PDF
    We report the results of a study into the factors controlling the quality of nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent postetch pattern definition, and minimum feature size all depend on the quality of the Au substrate used in material mask atomic nanolithographic experiments. We find that sputtered Au substrates yield much smoother surfaces and a higher density of {111}-oriented grains than evaporated Au surfaces. Phase imaging with an atomic force microscope shows that the quality and percentage coverage of SAM adsorption are much greater for sputtered Au surfaces. Exposure of the self-assembled monolayer to an optically cooled atomic Cs beam traversing a two-dimensional array of submicron material masks mounted a few microns above the self-assembled monolayer surface allowed determination of the minimum average Cs dose (2 Cs atoms per self-assembled monolayer molecule) to write the monolayer. Suitable wet etching, with etch rates of 2.2 nm min-1, results in optimized pattern definition. Utilizing these optimizations, material mask features as small as 230 nm in diameter with a fractional depth gradient of 0.820 nm were realized

    Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information on anatomical connectivity in the brain by measurements of the diffusion of water in white matter tracts lead to quantification of local tract directionality and integrity.</p> <p>Methods</p> <p>The combination of connectivity mapping (fibre tracking, FT) with quantitative diffusion fractional anisotropy (FA) mapping resulted in the approach of results based on group-averaged data, named tractwise FA statistics (TFAS). The task of this study was to apply these methods to group-averaged data from different subjects to quantify differences between normal subjects and subjects with defined alterations of the corpus callosum (CC).</p> <p>Results</p> <p>TFAS exhibited a significant FA reduction especially in the CC, in agreement with region of interest (ROI)-based analyses.</p> <p>Conclusion</p> <p>In summary, the applicability of the TFAS approach to diffusion tensor imaging studies of normal and pathologically altered brains was demonstrated.</p

    Effects of mitochondrial dysfunction on the immunological properties of microglia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells.</p> <p>Methods</p> <p>We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS-) induced microglial activation and the alternative, interleukin-4- (IL-4-) induced microglial activation in these mitochondrial toxin-treated microglial cells.</p> <p>Results</p> <p>We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1ÎČ (IL-1ÎČ), they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1) and the counteraction of the LPS induced cytokine release.</p> <p>Conclusions</p> <p>Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.</p

    A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Get PDF
    International audienceBACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. RESULTS: SOD1(G93A) mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice). Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A) mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. CONCLUSIONS: These findings suggest that the protection against SOD1(G93A) offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons
    • 

    corecore